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Abstract The computational uncertainty principle (CUP) is applied to explain
the experimental formulae of the critical time of decoupling for Lorenz
equations (LEs). We apply the multiple precision (MP) library in obtaining
the long-time solution of LEs, and based on the classic Taylor scheme, we
developed a high-performance parallel Taylor solver to do the computation.
The new solver is several hundreds times faster than the reported solvers
developed in MATHEMATICA software, and it has the ability to yield longer
solutions of LEs, up to t ∼ 104 LTU (Lorenz time unit). Further, we notice
that the two computation processes with different precisions or orders will
produce the reliable correct reference solutions before they have a significant
difference. According to this property we propose an approach for maintaining
the correct numerical solution. The new solver and the solution validation
approach are used to identify and correct an erroneous solution reported in
a previous study.
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1 Introduction

Recent studies have documented the time-step sensitivity of numerical solu-
tions for Lorenz equations [1] (LEs) and other simple nonlinear atmospheric
models. Teixeira et al. ([2]; hereafter, TRJ07) discussed time-step sensitivity
for nonlinear systems and a quasigeostrophic (QG) model. Yao and Hughes
([3]; hereafter, YH08) considered it an important contribution to future stud-
ies, although, in contrast to TRJ07, they considered that the correct trajectory
of LEs remains unknown. Both TRJ07 and YH08 emphasized the importance
of time-step sensitivity in terms of numerical nonlinear dynamical systems.
Liao ([4]; hereafter, L09) reported that many factors (e.g., computational chaos
and computational periodicity) may cause the numerical results of a nonlinear
dynamic system to deviate markedly from the correct solution. This finding
highlights the importance of studying prediction uncertainty in numerical
computations.

YH08 noted that, ‘The sensitivity of computed results for chaos or turbu-
lence to the size of integration time steps is not completely unknown in the
numerical analysis community.’ Indeed, Li et al. ([5, 6]; hereafter LZC00 and
LZC01, respectively) and Li [7] had already carried out systematic investiga-
tions on the sensitivity of numerical solutions of nonlinear ordinary differential
equations (ODEs), employing both numerical experiments and theoretical
analysis. In particular, they presented the computational uncertainty principle
(CUP) in numerically solving ODEs. The works of LZC00 and LZC01 are
important because their results can help us to understand and explain most
of the phenomena reported by TRJ07 and L09. Based on LZC00 and LZC01
Hu and Chou [8] further proposed a new concept of globally convergence of
numerical pattern to study uncertainty of the numerical solution of a nonlinear
system’s long-term behavior. A review on CUP could be seen in Li and Chou
[9] and Li and Wang [10].

The sensitivity of computed results for chaos systems is important. For
example, LZC00, TRJ07, and L09 reported that the effective computation
time for double precision is approximately 35 LTU (Lorenz time unit) for LEs.
Consequently, many studies that use a step size of 0.01 and that integrate for
more than 3500 steps before analyzing the result of LEs would suffer from a
degree of inaccuracy. In such cases, the validity of the experimental results
is doubtful if only the original double-precision environment is employed.
Therefore, it is even more important to obtain a suitable difference solver to
provide the correct solution for 100 and 1000+ LTU, rather than to simply
present arguments regarding the time-step sensitivity and other sensitivities.

To overcome the limitation of the effective computation time that arises
from low floating-point precision, Wang et al. [11] and L09 presented multiple
precision utilities to be applied in solving LEs. These works proved that
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increased precision is valuable in terms of obtain reliable numerical solution.
L09 extended the reliable numerical solution of LEs to approximately 1200
LTU; however, additional work is required in this area. For example, L09 did
not validate the result obtained at 1200 LTU. Furthermore, a high-precision
solver is computationally expensive: L09 required 461 h to obtain the result
at t = 1200. The long computation time means that the scheme is seldom
used.

The aim of the present study is to propose an operational method which
can obtain the LEs’ long time correct numerical solution, and then we improve
the scheme performance to reduce the computation time. The organizations of
this article are as follows. In Section 2 the CUP is introduced and applied to
explain one of the experimental formulae proposed by TRJ07. In Section 3, the
theory and method to maintain the correct numerical solution are proposed.
The Sections 4 and 5 focus on the time cost analysis of reliable computation
with Taylor scheme, and then develop a high performance parallel version
Taylor scheme to solve LEs. The summary and some discussions are put in
Section 6.

2 Computational uncertainty principle and an explanation of results reported
by TRJ07

By employing the four classes (explicit one-step methods, explicit multistep
methods, implicit methods, and modified predictor corrector methods) of 29
standard numerical integration methods, LZC00 and LZC01 reported the step
size sensitivity of numerical nonlinear models, as also documented by TRJ07.
Figure 2 of TRJ07 essentially shows the same phenomena as those in Fig. 1
of LZC00. Furthermore, LZC00 and LZC01 studied the sensitivity to com-
putation precision (taking into account machine precision, such as round-off
errors) of numerical solutions for chaotic systems. In fact, step size sensitivity
is just one of multiple sensitivities to computational precision. Unlike TRJ07,
who used time steps to study the error evolution, LZC00 identified the optimal
step size (OS) and maximally effective computation time (MECT) by using an
optimal searching method. LZC00 and LZC01’s experiments and theoretical
analyses are relatively complicated in seeking to understand the global error
evolution of numerical solutions to chaos systems.

TRJ07 sought to explain the time step sensitivity and numerical convergence
(as outlined above) in terms of truncation error growth. In light of the findings
presented by LZC01, we consider that truncation error, when considered
alone, does not explain the sensitivity or numerical convergence. In fact, to
explore this issue, the total numerical error (i.e., the sum of the truncation
error e and round-off error r) growth should be taken into account. LZC00’s
experiments showed that the precision of floating-point operations has an
important effect on the long-time numerical integration of nonlinear systems
(TRJ07 did not discuss the influence of machine precision on the results).
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Hence, to address this issue, LZC01 introduced three types of convergences:
theoretical, numerical, and actual.

To ensure that the results of LZC00 and TRJ07 are applicable to more
general cases, it is necessary to improve the classical results and to obtain a
unified error estimate for the general multistep method, in particular to obtain
the normal accumulated growth of the round-off error for a floating-point
machine. By introducing a new type of recurrent inequality in LZC01, not only
are the classical error bounds improved, but a unified estimate is obtained for
the total error of the general method. Specifically, probabilistic theory is used
to obtain the normal accumulated growth of round-off error for a floating-
point machine. The detailed proof can be found in LZC01.1 Here, we provide
only the main results.

If the initial value is accurate, the numerical error is given by the sum of the
truncation error e and the round-off error r, yielding a total error of E = e + r.
Based on the statistical theory of local round-off errors (Henrici [12]), LZC01
derived the following unified estimate for the total error of the general k-step
size method for ODEs:

‖E (t; h)‖=‖e (t; h)‖+‖r (t; h)‖≤C (t) Ẽ (h, n)=C (t)
(

Chp+ σ

C̃
√

h

)
, (1)

where h is the step size, C(t) = eCL�̃(t−t0)/
√

CL, Ẽ(h, n) = ẽ + r̃ is the core
function (ẽ = Chp, r̃ = σ/C̃

√
h), C is a constant that depends on the employed

numerical method, CL is a constant that depends on the ODEs, C̃ = √
2CL,

p is the order of the numerical method, σ = 10−n M0, M0 = max
τ∈[t0,t]

‖y(τ )‖/2
√

3,

and n is the number of significant digits of the floating-point operation.
Equation 1 can explain the variation in numerical error with step size.

With decreasing step size, the total error initially decreases with decreasing
discretization error (also know as truncation error), because the total error is
primarily generated by the discretization error during this period. However,
when the step size is smaller than a certain critical value, the round-off
error caused by computation becomes dominant, meaning that the total error
increases with increasing round-off error. Invariably, there exists a step size H
for which the total error is minimized. This step size H is the OS. Using the
above theoretical formula, LZC01 found the OS (i.e., H) to be

H =
(

10−n

2pCD

)1/(p + 0.5)

, (2)

where D = C̃/M0.

1PDF files of the papers LZC00 and LZC01 can be download from http://159.226.119.57/
wpf/CUP/2000-ljp.pdf and http://159.226.119.57/wpf/CUP/2001-ljp.pdf, respectively.

http://159.226.119.57/wpf/CUP/2000-ljp.pdf
http://159.226.119.57/wpf/CUP/2000-ljp.pdf
http://159.226.119.57/wpf/CUP/2001-ljp.pdf
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An important contribution by TRJ07 is the approximation formulation of
the critical time of decoupling, as follows:

Tc (h) ≈ Tc (1) − 5.5 log10 (h) , (3)

where h = �t is the step size. This relationship establishes the limit of
predictability for Lorenz equations with step size h. However, (3) is only
suitable for the second-order numerical scheme used by Lorenz [1], for Lorenz
equations, and in cases for which the truncation error is much larger than the
round-off error. In fact, (3) is a special case of the work presented by LZC01,
which tells us the general relation between the critical time of decoupling and
the order of the numerical scheme, ODEs, step size, and machine precision.
Given the error tolerance δ, machine precision with a significant digit n and a
scheme of order p, (3) can be obtained from (1). Following (1) one has

C (Tc (h1))

C (Tc (h))
= hp + σ/CC̃

√
h

hp
1 + σ/CC̃

√
h1

,

i.e.,

Tc (h) = Tc (h1) − 1

CL�̃
ln

hp + σ/CC̃
√

h

hp
1 + σ/CC̃

√
h1

. (4)

This is the general relation of the critical time of decoupling between two
step sizes h and h1, which depend on the ODE, the order of the scheme, and
machine precision. In the case of a large truncation error, (4) is approximately
simplified as

Tc (h) ≈ Tc (h1) − p

CL�̃
(ln h − ln h1) , (5)

where h and h1 > H. When p = 2 and h1 > 1, we have

Tc (h) ≈ Tc (1) − 2

CL�̃
ln h ≈ Tc (1) − 4.6

CL�̃
log10 h. (6)

Equation 6 contains (3).
The formula derived from LZC01 can also be used to explain three other

experiment-based relations obtained by L09 (for details, see Cao and Wang
[13]).

3 Utility of multiple precision and determination of the correct numerical
solution

Here, we focus on obtaining the correct long-time reference solution of ODEs.
We use the Lorenz equation as an example because it has been intensively
studied and because the solutions are sensitive to the initial conditions, due to
chaos.
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From Section 2, we know that MECT exists in a computation when the
floating-point precision is fixed. LZC00 reported that MECT values for single
and double precision are 16.8 and 35.4, respectively. Therefore, if we want
to obtain the solution of t = 1000, single- and double-precision machines are
insufficient.

Fortunately, a suite of software named ‘MP’ (meaning ‘multiple precision’;
Oyanarte [14]) has been developed for computation. The MP library provides
high floating-point precision for numerical computation. The similar reliable
mathematic librarys are support by scientific software such as MATHEMAT-
ICA, MAPLE, and MATLAB. MP is well known for its successful application
in computing π to millions of digits. Wang et al. [11] described how to apply
MP in solving LEs. The precision in MP is bits precision, which is different
from significant digits. For example, single and double precision correspond to
7.22 and 15.95 significant digits, respectively, while they correspond to 24- and
53-bit precision in MP, respectively.

Using MP, it is possible to choose a sufficiently high precision with a certain
step size h to maintain round-off errors that are negligible compared with
the truncation error. In such a case, the total computation errors are derived
solely from truncation errors. Although we apply very high precision in the
computation process, for convenience of analysis, we only output (to file or to
the screen) the computed result to the first 16 digits. Thus, the result with a
relevant error less than 10−16 will appear the same as the correct result in the
case of 16-digit output. Hereafter, we regard E0 = 10−15 as a visible error for
16-digit output.

The truncation error for each computation step is small; however, after
thousands of computation steps, the accumulation of truncation errors means
that the total computation error becomes a significant error Es, Es >> Et1
where Et1 is the truncation error derived from a single computation step.
For example, for the fourth-order Runge–Kutta (hereafter, RK4) method,
using h = 10−6, p = 4, and Et1 ≈ h4 ≈ 10−24, a significant error arises in the
case of Es = 10−8 >> 10−24 (we regard Es = 10−8 as a significant error in this
study). The error evolution for Es to the critical error Ec can be approximately
described by the initial error rule from Eq. 60 in LZC01:

‖e (t; h)‖ ≤ N1 (η) EsekL�∗(t−t0), (7)

where k is the number of steps in the multistep method, and the definition of
N1(η), L, �∗ are given in LZC01.

Given the error tolerance δ, the initial error vector is (�x0, 0, 0), meaning

that Es =
√

�x2
0 = �x0; i.e., N1(η)�x0ekL�∗t = δ.

Taking the base 10 logarithm of both sides of the above equation, we have

Tc = − 2.3
kL�∗ log10 �x0 + 2.3

kL�∗ log10
δ

N1 (η)
. (8)
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Table 1 Last three lines from Table 1 in L09

t x y z

1150 −14.378782424952437 −11.819346602645444 37.319351169225996
1175 −11.794511899005188 −13.181679857519981 29.65720151904728
1200 2.4537546196402595 4.124943247158509 19.349201739150004

This formula implies a general linear relationship between Tc and the loga-
rithm of the inaccuracy of the initial conditions �x0.

For certain initial conditions, (8) becomes the formula proposed by L09:

Tc ≈ −2.5 log10 (�x0) . (9)

If we make substitution of Es = 10−8 into (9), we have Tc ≈ 20. This means
that if the computation error reaches the error Es = 10−8, it will reach Ec

within 20 LTU. Therefore, if we start two computation processes with different
precisions or orders, the resulting outputs are the correct reference solutions
before they develop a significant error Es. This is an important and operational
determination to obtain the correct reference solutions. Using the program
developed in Section 5, we assessed the result reported by L09 with an initial
value of (−15.8, −17.48, 35.64). The numerical solution listed in Table 1 of
L09 is correct before t reaches 1150, but after this point the solution contains
visible errors (The last three lines are listed in Table 1). For t = 1175, the
error becomes the significant error (approximately �x ≈ 10−6); the result at
t = 1200 is already incorrect. Table 2 lists the correct numerical solutions for
time values of 1150, 1175, and 1200 (The reliable computation which gives the
results up to 2500 LTU same as the experiments in Table 4 can tell us that the
values in Table 2 is correct.). Even so, Liao’s result at t = 1100 LTU is correct
and confirmed by the experiments, and to our knowledge that Liao [4] was the
first one to gain the accurate numerical result of Lorenz equation in such a
long time.

The incorrect nature of the original solution example indicates that the
experimental formula employed by L09 is not exact, especially the relation of
Tc to K, and of Tc to M. However, Liao’s formula yields the approximately
correct result and his work is very valuable to the subsequently research.
This minor error indicates the importantance on developing a suitable method
for assessing the accuracy of numerical results, to avoid providing inaccuracy
results.

Table 2 Corrected results for the last three lines from Table 1 in L09

t x y z

1150 −14.378782424952439 −11.819346602645446 37.319351169225996
1175 −11.794510477754745 −13.181680560399085 29.657196905685254
1200 −7.360729071096472 −11.937734008420378 16.803323148067371
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4 Time cost analysis to obtain the correct reference solution for LEs

The operational way to obtain the long-time numerical solution for chaos
dynamics systems does not only depend on the step size and precision of the
difference method: it is also limited by the real-world time cost of the solution
process. For example, in the computation of LEs by RK4, we can choose a very
small step size such as h = 10−170 and a very high precision K = 10000 to obtain
a correct solution for t = 1000; however, the total number of computation
loops is approximately

t
h

≈ 10173. (10)

In this case, if one loop of computation costs 10−4 seconds, reflecting the CPU
speed of the machine, it would take approximately 3.1 × 10160 years to finish
the computation. Therefore, the above approach to obtaining the solution of
t = 1000 is unrealistic given the current state of technology.

The truncation error is about Et ∼ Chp and the computation time is mainly
affected by t

h ; therefore, if we need Et ∼ C1h4 for the RK4 method, we can use
a higher-order method with a fixed step size (such as 0.01) to reach the same
Et = C20.01p. The higher-order time cost is on the magnitude of

t
0.01

≈ 105 (11)

loops, and one loop of the higher-order method may cost 101 seconds, which is
larger than the cost in RK4. The total computation cost is about 106 seconds.

The above analysis reveals that the use of a suitable higher-order method
in obtaining the correct reference solution of LEs can yield an exponential
reduction in computation time. When using MP and higher-order methods,
the search for the optimal step size is not as important as that in the single-
or double-precision floating-point environments because the increased order
of the scheme is more efficient in the computation of this type of differential
equation.

5 Multiple precision Taylor method and its parallel performance

The classical LEs introduced by Lorenz [1] are as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt

= −σ x + σ y

dy
dt

= Rx − y − xz

dz
dt

= xy − b z

, (12)

where σ , R, and b are nondimensional constants, and t is nondimensional time
(R = 28.0, σ = 10.0, b = 8/3).
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A classical higher-order method to solve ODEs is the Taylor method.
Accounts of the application of the Taylor scheme to LEs can be found in
LZC01, Lorenz [15], and L09. The p-order truncated Taylor scheme with step
size h is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 = xn +
p∑

k=1

αkhk

yn+1 = yn +
p∑

k=1

βkhk

zn+1 = zn +
p∑

k=1

γkhk

, (13)

where αk = 1
k!

dkx(tn)

dtk , βk = 1
k!

dk y(tn)

dtk , and γk = 1
k!

dkz(tn)

dtk ; i.e.,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 = xn +
p∑

k=1

αkhk = xn +
p∑

k=1

hk

k! x(k)

yn+1 = yn +
p∑

k=1

βkhk = yn +
p∑

k=1

hk

k! y(k)

zn+1 = zn +
p∑

k=1

γkhk = zn +
p∑

k=1

hk

k! z(k)

,

where x(k) = dkx(tn)

dtk , y(k) = dk y(tn)

dtk , and z(k) = dkz(tn)

dtk .
The core process of the Taylor method is computation of the coefficients

x(k), y(k), and z(k). For (12),
⎧⎪⎨
⎪⎩

x(1) = −σ x0 + σ y0

y(1) = Rx0 − y0 − x0z0

z(1) = x0 y0 − b z0

and
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(k+1) = −σ x(k) + σ y(k)

y(k+1) = Rx(k) − y(k) −
k∑

i=0

Ci
kx(k−i)z(i)

z(k+1) =
k∑

i=0

Ci
kx(k−i)y(i) − b z(k)

, (14)

where Ci
k = k!

i!(k−i)! .
Equation 14 indicates that each x(k), y(k), and z(k) can be computed from the

previous x(i), y(i), and z(i) without computation of the complex higher-order
derivative of (12).
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Table 3 Performance of the
paralleled Taylor scheme for
LEs (t = 1200, K = 800,
p = 400)

CPU Time (h)

1 32.91
5 7.52
10 4.13
20 2.46
50 1.48

To save computation time, ak = hk

k! and Ci
k = k!

i!(k−i)! are computed previously
and stored in memory.

After computation of each x(k), y(k), and z(k), we use

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xn+1 = xn +
p∑

k=1
akx(k)

yn+1 = yn +
p∑

k=1
ak y(k)

zn+1 = zn +
p∑

k=1
akz(k)

to obtain the values at the next step.
The time required for the Taylor scheme is mainly the computation cost

of x(k), y(k), and z(k). At each step, x(k) needs 3p times of computation, while
y(k) needs 2p + p(p+1)

2 times and z(k) needs p + p(p+1)

2 times, yielding a total

Table 4 Reference solutions to t = 2500, for initial values of (−15.8, −17.48, 35.64), p = 1000,
K ≈ 2100, and h = 0.01

t x y z

100 −10.510118721506247 −12.172542813682252 27.476265630374758
200 −6.697233173381983 −11.911020483539128 13.036826414358320
300 10.197534991661733 3.906517722362926 35.337427092404411
400 −1.889247649804987 −3.565788040897466 20.299639635504597
500 −5.305099631571520 −9.425991029211517 12.302184230689779
600 −0.863505382597614 0.499057856286716 21.581438144249073
700 10.884963668216702 16.329893792467036 22.247458859587208
800 1.396334715413953 2.408771267581340 14.590441270059282
900 −6.449367823985297 −10.984642417532422 14.647974468278282
1000 13.881997000862393 19.918303160406392 26.901943308376104
1100 2.297459271183663 2.299710874996515 19.617779431769037
1200 −7.360729071096472 −11.937734008420378 16.803323148067371
1300 −5.888408663778747 −10.303983599962610 13.202322915916419
1400 −2.956453871180797 −1.638437228803989 23.191811743846468
1500 −10.139807686977655 −7.626371611693746 31.858410078297187
1600 −0.298335828888970 −0.429115365008562 12.939623163098718
1700 0.925156507499731 1.760513513099816 16.621563705172555
1800 −3.657244075577691 1.995602340686063 29.343722751687984
1900 8.268904400223825 2.769812726031063 32.709871058174137
2000 −6.873883693205019 −1.484834827669842 31.349521074674275
2100 −16.125339444926961 −10.712941885247025 42.104638675048292
2200 0.156180911104446 −2.183461941521876 23.296902764781983
2300 −12.769575216010759 −15.170846915761850 29.884784041691550
2400 10.167229763725251 2.538185738525101 36.359275696105307
2500 2.759152441189508 0.476284454767803 24.641050496931861
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of approximately 6p + p(p + 1) times. When the order of p is large, the
computation time is Tw ∝ p2.

This Taylor scheme, written in the language C with the MP library running
on an Intel Xeon 3.0 GHz CPU, can finish the computation for t = 1200 within
50 h. Compared with the time result reported by L09 (461 h), the present
approach is 9–10 times faster; however, this is still a long simulation time,
especially if we use higher-order and higher-precision computation to validate
the correction of the solution. Although our computer has many nodes, a
serial version of the Taylor scheme is only able to use one core; therefore,
we developed a parallel version of this scheme.

From (14), we have a time cost of p2 when we compute y(k) and z(k) for

the item
k∑

i=0
Ci

kx(k−i)z(i). Because each item of Ci
kx(k−i)z(i) is independent, we

can separate it to N CPUs for computation, and then collect the summed

result. The time cost of
k∑

i=0
Ci

kx(k−i)z(i) is about p(p+1)

2N theoretically, and the

total computation time is Tw ∝ p2/N. Because the communication latency of
each CPU is limited by InfiniBand hardware, the parallel efficiency is unable

Table 5 The values of last 25 steps of t = 2500 for variables x, the initial values are (−15.8, −17.48,
35.64), p = 1000, K ≈ 2100, and h = 0.01, 0.008, 0.005 respectively

t x(h = 0, 01) t x(h = 0.008) t x(h = 0.005)

2499.75 13.940269824026972 2499.8 13.044056525462182 2499.875 8.496147161034672
2499.76 13.963489999277806 2499.808 12.683151682861965 2499.88 8.165165980200449
2499.77 13.884116751049143 2499.816 12.274972388527750 2499.885 7.838897386867657
2499.78 13.701701156725459 2499.824 11.826386104294077 2499.89 7.518343312004366
2499.79 13.419448335960793 2499.832 11.344716937583200 2499.895 7.204392528717058
2499.8 13.044056525462182 2499.84 10.837475942758564 2499.9 6.897823051341781
2499.81 12.585280973458492 2499.848 10.312111383610313 2499.905 6.599305751905954
2499.82 12.055279844395985 2499.856 9.775791388535488 2499.91 6.309408959870233
2499.83 11.467825738980608 2499.864 9.235226897870936 2499.915 6.028603826509313
2499.84 10.837475942758564 2499.872 8.696538380967786 2499.92 5.757270254234712
2499.85 10.178787316218246 2499.88 8.165165980200449 2499.925 5.495703212187169
2499.86 9.505642076995475 2499.888 7.645819805245442 2499.93 5.244119281353541
2499.87 8.830724903233399 2499.896 7.142465144558241 2499.935 5.002663294353930
2499.88 8.165165980200449 2499.904 6.658336322461971 2499.94 4.771414956183620
2499.89 7.518343312004366 2499.912 6.195972655458072 2499.945 4.550395352067108
2499.9 6.897823051341781 2499.92 5.757270254234712 2499.95 4.339573266847069
2499.91 6.309408959870233 2499.928 5.343544081341681 2499.955 4.138871256791963
2499.92 5.757270254234712 2499.936 4.955595536648457 2499.96 3.948171429279260
2499.93 5.244119281353541 2499.944 4.593781769143467 2499.965 3.767320898501717
2499.94 4.771414956183620 2499.952 4.258083809963834 2499.97 3.596136896220903
2499.95 4.339573266847069 2499.96 3.948171429279260 2499.975 3.434411525768145
2499.96 3.948171429279260 2499.968 3.663463309076453 2499.98 3.281916155109350
2499.97 3.596136896220903 2499.976 3.403181686177955 2499.985 3.138405451002044
2499.98 3.281916155109350 2499.984 3.166401059863488 2499.99 3.003621061240996
2499.99 3.003621061240996 2499.992 2.952090889017366 2499.995 2.877294955870724
2500 2.759152441189508 2500 2.759152441189508 2500 2.759152441189508
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to reach 100%. Table 3 lists the performance of the paralleled Taylor scheme
for LEs.

Using the parallel program, it is possible to compute the correct reference
solution for t = 1200 within 1.5 h, which is 300 times faster than that reported
by L09. Furthermore, we obtain the solution for t = 2500 within 30 h (with
p = 1000 and precision = 7000 bits; i.e., K ≈ 2100) and the result is validated
by computation (p = 1200, precision = 7000 bits; Table 4).

Table 5 gives the result of three different step-size near t = 2500. We can
find that even for this long computation time, the reliable computation (p =
1000, K ≈ 2100) can still give step insensitivity result.

6 Summary and discussion

We introduced a theoretical analysis of truncation and round-off error in the
numerical integration of ODEs. The computational uncertainty principle was
applied to explain one of the experimental formulae proposed by TRJ07. With
a focus on the computation of long-time solutions of LEs, the MP library was
applied in this numerical computation. We also proposed a method to maintain
the correct numerical solution.

A time cost analysis revealed that an increase in the order of the scheme
is more valuable than a decrease in the size of the time step. Based on the
classic Taylor scheme, we developed a high-performance parallel Taylor solver
with which to compute LEs. This solver was used to identify and correct
an erroneous solution proposed in a previous study. In addition, the new
solver has a computation speed that is 100 times faster than that of existing
solvers; it can also help to obtain a longer solution of LEs. The algorithms
of the parallel Taylor solver are also suitable for other well-known nonlinear
chaos ODEs such as the Rossler attractor and Chen attractor. The solver is
widely applicable in obtaining the correct long-time reference solutions for
these strange attractors. The high-performance Taylor scheme, which yields
the long-time solution for LEs, aims to inspire the study of chaotic dynamic
systems in the future as well as today.

We consider that sets of correct reference solutions of LEs are required to
validate correction of the relevant program and the accuracy of the solution be-
fore beginning an analysis, especially in terms of the long-time predictability or
behavior of LEs. We obtained three sets of reference solutions corresponding
to the three experimental parameters for initial values proposed by Lorenz [1]
(0,1,0), LZC00 (5,5,10), and L09 (−15.8, −17.48, 35.64). These solutions can
be downloaded from http://159.226.119.57/wpf/prog/Lorenz_Eq/.

It remains a challenging task to obtain the long-time reference solution of
LEs. Our solver can extend t to the magnitude of 104 LTU; however, the time
cost shows a marked increase, making it unrealistic to obtain the solution for
t > 104∼5. It remains a challenge for all researchers working in this field to
develop more efficient and enhanced schemes or methods to overcome this
problem.

http://159.226.119.57/wpf/prog/Lorenz_Eq/
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