正高级人员

陈尚锋


个人简介

陈尚锋:研究员,博士生导师。主要从事ENSO动力学、中高纬气候动力学、热带和中高纬系统相互作用机制方面的研究。在国内外期刊发表论文160多篇,其中在Nature Geoscience, npj Climate and Atmospheric Science, Journal of Climate, Climate Dynamics, ACP, GRL, JGR-Atmospheres, MWR等国际知名SCI期刊发表第一和通讯作者论文80多篇。多篇成果入选ESI全球高被引论文Nature, Nature Geoscience, Nature Climate Change等期刊引用3400多次。入选中国科协第二届青年人才托举工程和全球最具影响力的1000位气候领域科学家榜单,国际气象学与大气科学协会中国委员会青年工作组成员。担任《高原气象》和《气象与环境学报》青年编委及Frontiers in Environmental Science  (IF=4.6) 期刊Associate Editor担任Nature Communications等二十多个国际学术期刊审稿人,被IOP出版社授予IOP Trusted Reviewer Status


联系方式

邮件:chenshangfeng@mail.iap.ac.cn

地址:北京朝阳区北辰西路81号院

主页:https://www.researchgate.net/profile/Shangfeng-Chen


教育和工作

2006.92010.7 中山大学大气科学系,本科

2010.92015.6 中国科学院大气物理研究所,硕博 (导师:陈文研究员) 

2014.42014.6  香港中文大学,助理研究员

2015.72018.2  中国科学院大气物理研究所,博后 (导师:吴仁广研究员)

2018.62018.9  奥地利气象与地球物理中央研究院,访问学者

2019.62019.9  加拿大环境部,访问学者 (合作导师:余斌研究员)

2018.32022.1 中国科学院大气物理研究所,副研究员

2022.2至今 中国科学院大气物理研究所,研究员


获奖情况:

2021中国科学院大气物理研究所学笃风正创新贡献奖

2021年 中国科学院大气物理研究所年度先进工作者

2017年 中国气象学会涂长望青年气象科技奖

2016中国科学院大气物理研究所优秀博士学位论文

2015年 北京市优秀博士毕业生

2015年 朱李月华优秀博士生奖

2014年 中国科学院院长奖优秀奖

2014年 博士研究生国家奖学金

2014中国科学院大学三好学生标兵

2013年 博士研究生国家奖学金

2013年 中国科学院大学三好学生标兵

2011年 中国科学院研究生院三好学生

2010年 中山大学优秀本科毕业生


发表论文情况(*通讯作者):

[166] Chen, S.-F., W. Chen, W. Zhou, R. Wu, S.-Y. Ding, L. Chen, Z.-Q. He, and R.-W. Yang, 2024: Interdecadal Variation in the Impact of Arctic Sea Ice on the El Ni?o-Southern Oscillation: The Role of Atmospheric Mean Flow. Journal of Climate, Accepted.

[165] Fang, Y.-F., S. Yang, X.-M. Hu, S.-H. Lin, J.A. Screen, and S.-F. Chen, 2024: Remote forcing for circulation pattern favorable to surface melt over the Ross ice shelf. Journal of Climate, https://doi.org/10.1175/JCLI-D-23-0120.1.

[164] Wang, Z.-B., Q.-H. Ding, R. Wu, T. Ballinger, B. Guan, D. Bozkurt, D. Nash, I. Baxter, D. Topál, Z. Li, G. Huang, W. Chen, S.-F. Chen, X. Cao, and Z. Chen, 2024: Role of atmospheric rivers in shaping long term Arctic moisture variability. Nature Communications, 15(1), 5505, https://doi.org/10.1038/s41467-024-49857-y.

[163] Yao, S.-L., R. Wu, P. -F. Wang, and S.-F. Chen, 2024: Rapid high-latitude cooling in the southeastern Pacific sector driven by North Atlantic warming during 1979-2013 in CESM1. Environmental Research Letters, 19, 064025.

[162] Chen, L.-Y., W. Chen. P. Hu, S.-F. Chen, Z.-B. Wang, X.-D. An, Y.-F. Fang, and L.-Y. Yuan, 2024: Interannual variation of the initial formation of the Siberian High: the role of the North Atlantic sea surface temperatures and the high-latitude Central Eurasia snow-cover conditions. Climate Dynamics, https://doi.org/10.1007/s00382-024-07290-3.

[161] Feng, Z., W.-Q. Xing, W.-G Wang, Z. Yu, Q. Shao, and S.-F. Chen, 2024: Assessing the spatiotemporal dynamics of water and carbon fluxes in subtropical forest of Xin'an River Basin using an improved Biome-BGC model. Journal of Hydrology, 635, 131201.

[160] Huang, R.-P., S.-F. Chen*, W. Chen, R. Wu, Z.-B. Wang, P. Hu, L. Wu, L. Wang, and J.-L. Huangfu, 2024: Impact of the winter regional Hadley circulation over western Pacific on the frequency of following summer tropical cyclone Landfalling in China. Journal of Climate, 37(13), 3521-3541.

[159] Zheng, Y.-Q.S.-F. Chen*, W. Chen, R. Wu, Z.-B. Wang, B. Yu, P. Hu, and J.-L. Piao, 2024: The role of the Aleutian Low in the relationship between spring Pacific Meridional Mode and following ENSO. Journal of Climate, 37(11), 3249-3268.

[158] Chen, S.-F., W. Chen, S.-P. Xie, B. Yu, R. Wu, Z.-B. Wang, X.-Q. Lan, and H.-F. Graf, 2024: Strengthened impact of boreal winter North Pacific Oscillation on ENSO development in warming climate. npj Climate and Atmospheric Science, 7, 69, https://doi.org/10.1038/s41612-024-00615-3.

[157] Cai, Q.-Y., W. Chen*, S.-F. Chen*, S.-P. Xie, J.-L. Piao, T.-J. Ma, and X.-Q. Lan, 2024: Recent pronounced warming on the Mongolian Plateau boosted by internal climate variability. Nature Geoscience, 17, 181-188, https://www.nature.com/articles/s41561-024-01377-6.

[156] Chen, S.-F.*, W. Chen, R. Wu, B. Yu, and J. Ying, 2024: Joint impacts of winter North Pacific Oscillation and early spring Aleutian Low intensity on the following winter ENSO. Climate Dynamics, 62 (1), 257-276.

[155] Cheng, X., S.-F. Chen*, W. Chen, R. Wu, R.-W. Yang, P. Hu, L. Chen, and H.-S. Aru, 2024: Selective influence of the Arctic Oscillation on the Indian Ocean Dipole and El Ni?o-Southern Oscillation. Climate Dynamics, https://doi.org/10.1007/s00382-023-07098-7.

[154] Cheng, X., S.-F. Chen*, W. Chen, P. Hu, Z.-C. Du, X.-Q Lan, and Y.-Q. Zheng, 2024: How does the North Pacific Meridional Mode affect the Indian Ocean Dipole? Climate Dynamics, https://doi.org/10.1007/s00382-023-07055-4.

[153] Hu, P, W. Chen, S.-F. Chen, R.-W. Yang, L. Wang, and Y.-Y. Liu, 2024: Revisiting the linkage between the Pacific-Japan pattern and Indian summer monsoon rainfall: the crucial role of the Maritime Continent. Geophysical Research Letters, 51 (3), e2023GL106982.

[152] 陈文,于甜甜,冯娟,陈尚锋,朴金玲,2024:东亚夏季风与热带海气相互作用研究进展.大气科学, 48, 160-187.

[151] Chen, L.-Y., W. Chen, P. Hu, S.-F. Chen, X.-D. An, T.-J. Ma, and Z.-K. Wang, 2024: Processes and mechanisms of the initial formation of the Siberian High during the autumn-to-winter transition. Climate Dynamics, 62, 315-329.

[150] Hu, P., W. Chen, S.-F. Chen, L. Wang, and Y.-Y. Liu, 2024: Quantitative decomposition of the interdecadal change in the correlation coefficient between the El Ni?o-Southern Oscillation and South Asian Summer Monsoon. Theoretical and Applied Climatology, https://doi.org/10.1007/s00704-024-04851-8.

[149] Chen, W., J.-L. Piao, S.-F. Chen, L. Wang, W. Zhao, Z.-K. Wang, and Q.-L. Wang, 2024: Multi-Scale Variations and Future Projections of Dry-Wet Conditions over the Monsoon Transitional Zone in East Asia: A Review. Fundamental Research, https://doi.org/10.1016/j.fmre.2024.01.023.

[148] Wang, Z.-K., W. Chen, J.-L. Piao, S.-F. Chen, J.-S. Kim, L. Wang, and T.-T. Yu, 2023: Responses of gross primary productivity in different types of terrestrial ecosystems to interannual variation in the northern boundary of East Asian summer monsoon. Global and Planetary Change,https://doi.org/10.1016/j.gloplacha.2024.104414.

[147] Aru, H.-S., W. Chen, S.-F. Chen, C.I. Garfinkel, T. Ma, Z. Dong, and P. Hu, 2023: Variation in the impact of ENSO on the western Pacific pattern influenced by ENSO amplitude in CMIP6 simulations. Journal of Geophysical Research: Atmospheres, 128 (22), e2022JD037905.

[146] Piao, J.-L., W. Chen, J. Kim, W. Zhou, S.-F. Chen, P. Hu, and X.-Q. Lan, 2023: Future changes in rainy season characteristics over East China under continuous warming. Climatic Change, 176 (9), 120.

[145] Aru, H.-S., W. Chen, S.-F. Chen, X.-D. An, T.-J. Ma, and Q.-Y. Cai, 2023: Asymmetrical modulation of the relationship between the western Pacific pattern and El Niño-Southern Oscillation by the Atlantic Multidecadal Oscillation in the boreal winter. Geophys. Res. Lett., 10.1029/2023GL103356.

[144] An, X.-D, W. Chen, W.-H. Zhang, S.-F. Chen, T.-J. Ma, F. Wang, and L.-F. Sheng, 2023: Record-breaking summer rainfall in the Asia–Pacific region attributed to the strongest Asian westerly jet related to aerosol reduction during COVID-19. Environ. Res. Lett., doi:10.1088/1748-9326/acdd84.

[143] Hu, P., W. Chen, S.-F. Chen, L. Wang, and Y.-Y. Liu, 2023: Impacts of Pacific Ocean SST on the interdecadal variations of tropical Asian summer monsoon onset: New eastward-propagating mechanisms. Climate Dynamics, https://doi.org/10.1007/s00382-023-06824-5.

[142] Chen, S.-F.*, W. Chen, B. Yu, L. Wu, L. Chen, Z.-B. Li, H.-S Aru, and J.-L Huangfu, 2023: Impact of the winter Arctic sea ice anomaly on the following summer tropical cyclone genesis frequency over the western North Pacific. Climate Dynamics, https://doi.org/10.1007/s00382-023-06789-5.

[141] Chen, S.-F., W. Chen, B. Yu, R. Wu, H.-F. Graf, and L. Chen, 2023: Enhanced impact of the Aleutian Low on increasing the Central Pacific ENSO in recent decades. npj Climate and Atmospheric Science, 6, 29, https://doi.org/10.1038/s41612-023-00350-1.221.

[140] Sun, B., L. Zhang, S.-F. Chen, and S. Outten, 2023: Editorial: Extreme Climate Events: Variability, Mechanisms, and Numerical Simulations. Frontiers in Earth Science, 11, 1159605.

[139] Piao, J.-L., W. Chen, S.-F. Chen, H.-N. Gong, Z.-B. Wang, and X.-Q. Lan, 2023: How well do CMIP6 models simulate the climatological northern boundary of the East Asian summer monsoon? Global and Planetary Change, 221, 104304.

[138] Zheng, Y.-Q., S.-F. Chen*, W. Chen, and B. Yu, 2023: A continuing increase of the impact of the spring North Pacific Meridional Mode on the following winter El Niño  and Southern Oscillation. Journal of Climate, 36(2), 585-602.

[137] Chen, S.-F.*, W. Chen, B. Yu, and R. Wu, 2023: How well can current climate models simulate the connection of the early spring Aleutian Low to the following winter ENSO? Journal of Climate, 36(2), 603-624.

[136] Cheng, X., S.-F. Chen*, W. Chen, and P. Hu, 2023: Observed impact of the Arctic Oscillation in boreal spring on the Indian Ocean Dipole in the following autumn and possible physical processes. Climate Dynamics, doi:10.1007/s00382-022-06616-3.

[135] Wu, R., P. Dai, and S.-F. Chen, 2022: Persistence or transition of the North Atlantic Oscillation across boreal winter: Role of the North Atlantic air-sea coupling, J. Geophys. Res. Atmos., doi:10.1029/2022JD037270.

[134] Hu, P., W. Chen, L. Wang, S.-F. Chen, Y.-Y. Liu, and L.-Y. Chen, 2022: Revisiting the ENSO-monsoonal rainfall relationship:New insights based on an objective determination of the Asian summer monsoon duration. Environ. Res. Lett., 17(10), 104050, doi:10.1088/1748-9326/ac97ad.

[133] Huang, R.-P., S.-F. Chen*, W.-Y. Ding, W. Chen, and P. Hu, 2022: Fine-scale characteristics of hourly intense rainfall in pre-summer and post-summer rainy seasons in Guangdong Province over coastal South China. Theor. Appl. Climatol., 150(3-4), 1083–1095.

[132] Chen, S.-F.*, W. Chen, J.-P. Guo, L.-Y. Song, and W. Zhao, 2022: Change in the dominant atmosphere-ocean systems contributing to spring haze pollution over North China Plain around the mid-1990s. Theor. Appl. Climatol., 150(3-4), 1097–1110.

[131] Chen, L.-Y., W. Chen, P. Hu, S.-F. Chen, and X.D. An, 2022: Climatological characteristics of the East Asian summer monsoon retreat based on observational analysis. Climate Dynamics, https://doi.org/10.1007/s00382-022-06489-6.

[130] Ma, T.-J., W. Chen, S.-F. Chen, C. Garfinkel, S.-Y. Ding, L. Song, Z.-B. Li, Y.-L. Tang, J.-L. Huangfu, H.-N. Gong, and W. Zhao, 2022: Different ENSO teleconnections over East Asia in early and late winter: role of precipitation anomalies in the tropical Indian Ocean-far western Pacific. Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0805.1.

[129] Hong, X.-W., R.-Y. Lu, S.-F. Chen, and S.-L. Li, 2022: The relationship between the North Atlantic Oscillation and the Silk Road pattern in summer. Journal of Climate, 35, 3091–3102. https://doi.org/10.1175/JCLI-D-21-0833.1.

[128] Yu, T.-T., J. Feng, W. Chen, and S.-F. Chen, 2022: The interdecadal change of the relationship between North Indian Ocean SST and tropical North Atlantic SST. J. Geophys. Res. Atmos., 127, e2022JD037078.

[127] Yu, T.-T., W. Chen, H.-N. Gong, J. Feng, and S.-F. Chen, 2022: Comparisons between CMIP5 and CMIP6 models in simulations of the climatology and interannual variability of the East Asian Summer Monsoon. Climate Dynamics, doi:10.1007/s00382-022-06408-9.

[126] Chen, S.-F., W.-J. Shi, Z.-B. Wang, Z.-N. Xiao, W. Chen, R. Wu, W. Xing, and W. Duan, 2022: Impact of interannual variation of the spring Somali Jet intensity on the northwest-southeast movement of the South Asian High in the following summer. Climate Dynamics, https://doi.org/10.1007/s00382-022-06399-7.

[125] Xue, X., W. Chen, and S.-F. Chen, 2022: Distinct impacts of two types of South Asian high on the connection of the summer rainfall over India and North China. Int. J. Climatol., doi:10.1002/joc.7692.

[124] Piao, J.-L., W. Chen, S.-F. Chen, and H.-N. Gong, 2022: Role of the internal atmospheric variability on the warming trends over Northeast Asia during 1970–2005. Theor. Appl. Climatol., https://doi.org/10.1007/s00704-022-04115-3.

[123] An, X.-D., W. Chen, Hu, P., S.-F. Chen, and L.-F. Sheng, 2022: Intraseasonal variation of the northeast Asian anomalous anticyclone and its impacts on PM2.5 pollution in the North China Plain in early winter. Atmos. Chem. Phys., 22, 6507–6521.

[122] Mei, S.-L, S.-F. Chen, Y. Li, and H.-S Aru, 2022: Interannual variations of rainfall in late-spring in Southwest China and associated sea surface temperature and atmospheric circulation anomalies. Atmos., 13, 735.

[121] 梅双丽,陈尚锋,2022: 华西秋雨变异特征及其成因分析,高原气象, https://kns.cnki.net/kcms/detail/62.1061.P.20220613.1743.004.html.

[120] Cen, S.-X., W. Chen, S.-F. Chen, L. Wang, J. Huangfu, and Y. Liu, 2022: Weakened influence of ENSO on the zonal shift of the South Asian High after the early 1980s. Int. J. Climatol., https://doi.org/10.1002/joc.7666.

[119] Cai, Q.-Y., W. Chen, S.-F. Chen, T.-J. Ma, and C. Garfinkel, 2022: Influence of the Quasi-Biennial Oscillation on the spatial structure of winter-time Arctic Oscillation. J. Geophys. Res. Atmos., 127, e2021JD035564.

[118] Hu, P., W. Chen, Z.-B. Li, S.-F. Chen, L. Wang, and Y.-Y. Liu, 2022: Close linkage of the South China Sea summer monsoon onset and extreme rainfall in May over Southeast Asia: role of the synoptic-scale systems. Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0740.1.

[117] Yu, T.-T., J. Feng, W. Chen, K. Hu, and S.-F. Chen, 2022: Enhanced tropospheric biennial oscillation of the East Asian summer monsoon since the late-1970s. Journal of Climate, 35, 1613–1628.

[116] Song, L.-Y., S.-F. Chen*, W. Chen, J.-P. Guo, C.-L. Cheng, and Y. Wang, 2022: Distinct evolutions of haze pollution from winter to following spring over the North China Plain: Role of the North Atlantic sea surface temperature anomalies. Atmos. Chem. Phys., 22, 1669–1688.

[115] Chen, S.-F.*, W. Chen, J. Ying, Y.-Q. Zheng, and X.-Q. Lan, 2022: Interdecadal modulation of the Pacific Decadal Oscillation on the relationship between spring Arctic Oscillation and the following winter ENSO. Front. Earth Sci., doi:10.3389/feart.2021.810285.

[114] Chen, S.-F., and W. Chen, 2022: Distinctive impact of spring AO on the succedent winter El Niño event: sensitivity to AO’s North Pacific component, Climate Dynamics, 58, 235–255. https://doi.org/10.1007/s00382-021-05898-3.

[113] Hu, P., W. Chen, S.-F. Chen, Y.-Y. Liu, L. Wang, and R.-P. Huang, 2022: The Leading Mode and Factors for Coherent Variations among the Subsystems of Tropical Asian Summer Monsoon Onset. Journal of Climate, 35, 1597–1612.

[112] Zhao, W., S.-F. Chen*, H. Zhang, J. Wang, W. Chen, R. Wu, W. Xing, Z. Wang, P. Hu, J. Piao, and T. Ma, 2022: Distinct impacts of ENSO on haze pollution in Beijing-Tianjin-Hebei region between early and late winters, Journal of Climate, 35, 687–704. https://doi.org/10.1175/JCLI-D-21-0459.

[111] Chen, S.-F., W. Chen, B. Yu, and Z.-B. Li, 2022: Impact of internal climate variability on the relationship between spring northern tropical Atlantic SST anomalies and succedent winter ENSO: the role of the North Pacific Oscillation. Journal of Climate, 35, 537–559.https://doi.org/10.1175/JCLI-D-21-0505.1.

[110] Hu, P., W. Chen, S.-F. Chen, L. Wang, and Y. Liu, 2022: The weakening relationship between ENSO and South China Sea summer monsoon onset in recent decade. Adv. Atmos. Sci., 39, 443–455.

[109] Aru, H.-S., S.-F. Chen, and W. Chen, 2022: Change in the variability in the Western Pacific pattern during boreal winter: Roles of tropical Pacific sea surface temperature anomalies and North Pacific storm track activity. Climate Dynamics, 58, 2451–2468.

[108] Piao, J.-L., W. Chen, S.-F. Chen, H.-N. Gong, and L. Wang, 2021: Mean states and future projections of precipitation over the monsoon transitional zone in China in CMIP5 and CMIP6 models. Climatic Change, 169, 1–12.

[107] Song, L.-Y., S.-F. Chen*, Y. Li, D. Qi, J.-K. Wu, M.-X. Chen, and W.-H. Cao, 2021: The Quantile-Matching approach to improving radar quantitative precipitation estimation in South China. Remote Sensing, 13, 4956.

[106] Huang, R.-P., S.-F. Chen*, W. Chen, B. Yu, Hu, P., J. Ying, and Q. Wu, 2021: Northern poleward edge of regional Hadley cell over western Pacific during boreal winter: year-to-year variability, influence factors and associated winter climate anomalies. Climate Dynamics, 56, 3643–3664.

[105] Zheng, Y.-Q., W. Chen, and S.-F. Chen*, 2021: Intermodel spread in the impact of the springtime Pacific Meridional Mode on following-winter ENSO tied to simulation of the ITCZ in CMIP5/CMIP6. Geophys. Res. Lett., 48, e2021GL093945.

[104] Aru, H.-S., W. Chen, and S.-F. Chen*, 2021: Is there any improvement in simulation of wintertime Western Pacific teleconnection pattern and associated climate anomalies in CMIP6 comparing with CMIP5 models? Journal of Climate, 34, 8841–8861.

[103] Piao, J., W. Chen, L. Wang, and S.-F. Chen, 2021: Future projections of precipitation, surface temperatures and drought events over the monsoon transitional zone in China from bias-corrected CMIP6 models, Int. J. Climatol., 42, 1203–1219.

[102] Song, L.-Y., S.-F. Chen*, W. Chen, W.-S. Duan, and Y. Li, 2021: Interdecadal change in the relationship between boreal winter North Pacific Oscillation and Eastern Australian rainfall in the following autumn, Climate Dynamics, 57, 3265–3283. https://doi.org/10.1007/s00382-021-05864-z.

[101] Chen, S.-F.*, R. Wu, and W. Chen, 2021: Influence of North Atlantic sea surface temperature anomalies on springtime surface air temperature variation over Eurasia in CMIP5 models, Climate Dynamics, 57, 2669–2686.

[100] Li, Z.-B., W. Chen, S.-F. Chen, Y. Sun, and D. Qian, 2021: Uncertainty of Central China Summer Precipitation and Related Natural Internal Variability Under Global Warming of 1oC to 3oC, Int. J. Climatol., 41, 6640–6653.

[99] Ying, J., T. Lian, P. Huang, G. Huang, D.-K. Chen, and S.-F. Chen, 2021: Discrepant effects of atmospheric adjustments in shaping the spatial pattern of SST anomalies between extreme and moderate El Niños. Journal of Climate, 34,  5229–5242.

[98] Zhao, W., W. Chen, S.-F. Chen*, H.-N. Gong, and T.-J. Ma, 2021: Roles of anthropogenic forcings in the observed trend of decreasing late-summer precipitation over the East Asian transitional climate zone, Sci. Rep., 11, 4935.

[97] Zheng, Y.-Q., W. Chen, S.-F. Chen*, S.-L. Yao, and C.-L. Cheng, 2021: Asymmetric impact of the boreal spring Pacific Meridional Mode on the following winter El Niño-Southern Oscillation. Int. J. Climatol., 41, 3523–3538.

[96] Aru, H.-S., S.-F. Chen, and W. Chen, 2021: Comparisons of the different definitions of the western Pacific pattern and associated winter climate anomalies in Eurasia and North America. Int. J. Climatol., 41, 2840–2859.

[95] Yu, B, G.-L. Li, H. Lin, and S.-F. Chen, 2021: Projected trends of wintertime North American surface mean and extreme temperatures over the next half century in two generations of Canadian Earth System Models, Atmosphere-Ocean, 59, 53–75.

[94] Chen, S.-F.*, W. Chen, R. Wu, B. Yu, and L.-Y. Song, 2021: Performance of the IPCC AR6 models in simulating the relation of the western North Pacific subtropical high to the spring northern tropical Atlantic SST, Int. J. Climatol., 41, 2189–2208.

[93] Chen, S.-F.*, R. Wu, W. Chen, L.-Y. Song, W. Cheng, and W.-J. Shi, 2021: Weakened impact of autumn Arctic sea ice concentration change on the subsequent winter Siberian High variation around the late-1990s. Int. J. Climatol., 41, E2700–E2717.

[92] Chen, S.-F.*, B. Yu, R. Wu, W. Chen, and L.-Y. Song, 2021: The dominant North Pacific atmospheric circulation patterns and their relations to Pacific SSTs: Historical simulations and future projections in the IPCC AR6 models. Climate Dynamics, 56, 701–725.

[91] Zheng, Y.-Q., S.-F. Chen*, W. Chen, and B. Yu,2021: Diverse influences of spring Arctic Oscillation on the following winter El Niño-Southern Oscillation in CMIP5 models. Climate Dynamics, 56, 275–297.

[90] Xue, X., W. Chen, S.-F. Chen, S. Sun, and S. Hou, 2021: Distinct impacts of two types of South Asian highs on East Asian summer rainfall. Int. J. Climatol., 41, E2718–E2740.

[89] Piao, J.-L., W. Chen, and S.-F. Chen, 2021: Sources of the internal variability-generated uncertainties in the projection of Northeast Asian summer precipitation. Climate Dynamics, 56, 1783–1797.

[88] Hu, P., W. Chen, S.-F. Chen, Y. Liu, L. Wang, and R. Huang, 2021: Impact of the March Arctic Oscillation on the South China Sea Summer Monsoon Onset. Int. J. Climatol., 41, E3239–E3248.

[87] Piao, J.-L., W. Chen, and S.-F. Chen, 2020: Water vapor transport changes associated with the interdecadal decrease in the summer rainfall over Northeast Asia around the late-1990s. Int. J. Climatol., 41, E1469–E1482.

[86] Chen, S.-F.*, and B. Yu, 2020: The seasonal footprinting mechanism in large ensemble simulations of the second generation Canadian Earth System Model: Uncertainty due to internal climate Variability. Climate Dynamics, 55, 2523–2541.

[85] Wang, S., W. Chen, S.-F. Chen, and S.Y. Ding, 2020: Interdecadal change in the North Atlantic storm track during boreal summer around the mid-2000s: role of the atmospheric internal processes. Climate Dynamics, 55, 1929–1944.

[84] Chen, S.-F.*, and B. Yu,2020: Projection of winter NPO-following winter ENSO connection in a warming climate: Uncertainty due to internal climate variability. Climatic Change, 162:723–740. doi:10.1007/s10584-020-02778-3.

[83] Chen, S.-F., R. Wu, W. Chen, and K. Li , 2020: Why does a colder (warmer) winter tend to be followed by a warmer (cooler) summer over northeast Eurasia? Journal of Climate, 33, 7255–7274.

[82] Zhao, W., N.-F. Zhou, and S.-F. Chen*, 2020: The record-breaking high temperature over Europe in June of 2019. Atmosphere, 11, 524, doi:10.3390/atmos11050524

[81] Yu, B., G.-L. Li, S.-F. Chen, and H. Lin, 2020: The role of internal variability in climate change projections of North American surface air temperature and temperature extremes in CanESM2 large ensemble simulations. Climate Dynamics, 55, 869–885.

[80] Chen, S.-F.*, W. Chen, R. Wu, and L.-Y. Song, 2020: Impacts of the Atlantic Multidecadal Oscillation on the Relationship of the Spring Arctic Oscillation and the Following East Asian Summer Monsoon. Journal of Climate, 33, 6651–6672.

[79] Chen, S.-F.*, R. Wu, W. Chen, S.-L. Yao, and B. Yu, 2020: Coherent interannual variations of springtime surface temperature and temperature extremes between central-northern Europe and  Northeast  Asia.  J. Geophys. Res. Atmos., 11, e2019JD032226.

[78] Chen, S.-F.*, R. Wu, W. Chen, K.-M. Hu, and B. Yu, 2020: Structure and dynamics of a springtime atmospheric wave train over the North Atlantic and Eurasia. Climate Dynamics, 54, 5111–5126.

[77] Piao, J.-L., W. Chen, S.-F. Chen, H.-N. Gong, X.-L. Chen, and B. Liu, 2020: The intensified impact of El Niño on late-summer precipitation over East Asia since the early 1990s. Climate Dynamics, 54, 4793–4809.

[76] Wu, R., and S.-F. Chen*, 2020: What leads to persisting surface air temperature anomalies from winter to following spring over the mid-high latitude Eurasia?. Journal of Climate, 33, 5861–5883.

[75] Chen, S.-F.*, J.-P. Guo, L.-Y. Song, J.B. Cohen, and Y. Wang, 2020: Intra-seasonal differences in the  atmospheric systems contributing to interannual variations of autumn haze pollution in the North China Plain. Theor. Appl. Climatol., 141, 389–403.

[74] Hu, P., W. Chen, S.-F. Chen, Y.-Y. Liu, L. Wang, and R.-P. Huang, 2020: Impact of the September Silk Road Pattern on the South China Sea Summer Monsoon Withdrawal. Int. J. Climatol., https://doi.org/10.1002/joc.6585.

[73] Cen, S.-X., W. Chen, S.-F. Chen, Y.-Y. Liu, and T.-J. Ma, 2020: Potential impact of atmospheric heating over  East Europe on the zonal shift in the South Asian high: the role of the Silk Road teleconnection.  Sci. Rep.,  10, 6543, https://doi.org/10.1038/s41598-020-63364-2.

[72] Hu, P., W. Chen, S.-F. Chen*, Huang, R.-P., and Y.-Y. Liu, 2020: Extremely early summer monsoon  onset in the South China Sea in 2019 following an El Niño event.  Mon. Wea. Rev., 148, 1877–1890.

[71] Piao, J.-L., W. Chen, S.-F. Chen, H.-N. Gong, and Q. Zhang, 2020: Summer water vapor sources in  Northeast  Asia and East Siberia revealed by a moisture-tracing atmospheric model. Journal of Climate, 33, 3883–3899.

[70] Chen, S.-F.*, W. Chen, R. Wu, B. Yu, and H.-F. Graf, 2020: Potential impact of preceding Aleutian Low variation on the El Niño-Southern Oscillation during the following winter.  Journal of Climate, 33, 3061–3077.

[69] Chen, S.-F.*, R. Wu, and W. Chen, 2020: Strengthened connection between springtime North Atlantic Oscillation and North Atlantic tripole SST pattern since the late-1980s.  Journal of Climate,  35(5), 2007–2022.

[68] Zhao, W., W. Chen, S.-F. Chen*, D. Nath, and L. Wang, 2020: Interdecadal change in the impact of North Atlantic SST on August rainfall over the monsoon transitional belt in China around the late-1990s. Theor. Appl. Climatol., 140, 503–516.

[67] Chen, S.-F.*, R. Wu, W. Chen, and B. Yu,2020: Influence of winter Arctic sea ice concentration change on the El Niño-Southern Oscillation in the following winter. Climate Dynamics, 54(1), 741–757.

[66] Chen, S.-F.*, R. Wu, W. Chen, and B. Yu,2020: Recent weakening of the linkage between the spring Arctic Oscillation and the following winter El Niño-Southern Oscillation. Climate Dynamics, 54(1), 53–67.

[65] Hu, P., W. Chen, S.-F. Chen, and R.-P. Huang, 2020: Statistical analysis of the impacts of intraseasonal oscillations on the south China sea summer monsoon withdrawal. Int. J. Climatol., 40, 1919–1927.

[64] Wang, S., W. Chen, S.-F. Chen, D. Nath, and L. Wang, 2020: Anomalous winter moisture transport associated with the recent surface warming over the Barents-Kara Seas region since the mid-2000s.  Int. J. Climatol., 40, 2497–2505.

[63] Chen, S.-F.*, R. Wu, W. Chen, and L.-Y. Song, 2020: Projected changes in mid-high latitude  Eurasian   climate during boreal spring in a 1.5oC and 2oC warmer world. Int. J. Climatol., 40, 1851–1863.

[62] Hu, P., W. Chen, S.-F. Chen, Y.-Y. Liu, and R.-P. Huang, 2020: Relationship between the South China Sea summer monsoon withdrawal and September-October rainfall over southern China.  Climate Dynamics, 54, 713–726.

[61] Zhao, W., W. Chen, S.-F. Chen*, S.Yao, and D. Nath, 2020: Combined impact of tropical central‐eastern Pacific and North Atlantic sea surface temperature on precipitation variation in monsoon transitional zone over China during August–September. Int. J. Climatol., 40, 1316–1327. 

[60] Chen, S.-F.*, J.-P. Guo, L.-Y. Song, J. Cohen, and Y. Wang, 2020: Temporal disparity of the atmospheric systems contributing to interannual variation of wintertime haze pollution in the North China Plain. Int. J. Climatol., 40, 128–144.

[59] 郑玉琼,陈文,陈尚锋* 2020: CMIP5模式对春季北极涛动影响后期冬季ENSO不对称性的模拟能力分析, 大气科学, 44, 435–454.

[58] Chen, S.-F.*, R. Wu, and W. Chen, 2019: Enhanced impact of Arctic sea ice change during boreal autumn on the following spring Arctic Oscillation since the mid-1990s. Climate Dynamics, 53, 5607–5621.

[57] Chen, S.-F.*, R. Wu, and W. Chen, 2019: Projections of climate changes over mid-high latitudes of  Eurasia during boreal spring: uncertainty due to internal variability. Climate Dynamics, 53, 6309–6327.

[56] Chen, S.-F., R. Wu, L.-Y. Song, and W. Chen, 2019: Present-day status and  future projection of  spring Eurasian  surface air temperature  in CMIP5 model simulations.  Climate Dynamics,  52, 5431–5449.

[55] Chen, S.-F.*, R. Wu, W. Chen, and L.-Y. Song, 2019: Performance of the CMIP5 models in simulating the Arctic Oscillation during boreal spring. Climate Dynamics, 53, 2083–2101.

[54] Chen, S.-F., R. Wu, L.-Y. Song, and W. Chen, 2019: Interannual variability of surface air temperature over mid-high latitudes of Eurasia during boreal autumn.  Climate Dynamics,  53, 1805–1821.

[53] Huang, R.-P., S.-F. Chen*, W. Chen, P. Hu., and B. Yu, 2019: Recent strengthening of the regional Hadley circulation over the western Pacific during boreal spring. Adv. Atmos. Sci., 36, 1251–1264.

[52] Chen, S.-F.*,  and L.-Y. Song, 2019: Recent strengthened impact of the winter Arctic Oscillation on the southeast Asian surface air temperature variation. Atmosphere, 10, 164.

[51] Chen, S.-F.*, and L.-Y. Song, 2019: The leading interannual variability modes of winter surface air temperature over Southeast Asia. Climate Dynamics, 52, 4715–4734.

[50] Chen, S.-F., J.-P. Guo, L.-Y. Song, J. Li, L. Liu, and J. Cohen, 2019: Interannual variation of the spring haze pollution over the North China Plain: Roles of atmospheric circulation and sea surface temperature. Int. J. Climatol., 39, 783–798.

[49] Zhao, W., W. Chen, S.-F. Chen*, S. Yao, and D. Nath, 2019: Interannual variations of precipitation over the monsoon transitional zone in China during August-September:  Role of sea surface  temperature  anomalies  over the tropical Pacific and North Atlantic. Atmos. Sci. Lett., 20, E872.

[48] Zhao, W., S.-F. Chen*, W. Chen, S. Yao, D. Nath, and B. Yu, 2019: Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dynamics, 53, 2031–2046, https://doi.org/10.1007/s00382-019-04762-9.

[47] Wang, L. Y. Liu, Y. Zhang, W. Chen, and S.-F. Chen, 2019: Time-varying structure of the wintertime  Eurasian  pattern: Role  of the North Atlantic sea surface temperature and atmospheric  mean flow,  Climate Dynamics, 52, 2467–2479.

[46] Hu, P., W. Chen, and S.-F. Chen,  2019: Interdecadal change in the South China Sea summer monsoon withdrawal around the mid-2000s. Climate Dynamics, 52, 6053–6064.

[45] Hu, P., W. Chen, S.-F. Chen, and R.-P. Huang, 2019: Interannual variability and triggers of the South China Sea summer monsoon withdrawal. Climate Dynamics, 53, 4355–4372.

[44] Chen, S.-F.*, L.-Y. Song, and W. Chen, 2019: Interdecadal Modulation of AMO on the Winter North Pacific Oscillation−Following Winter ENSO Relationship. Adv. Atmos. Sci., 36, 1393–1403.

[43] Chen, S.-F.*, B. Yu, W. Chen, and R. Wu, 2018: A review of atmosphere-ocean forcings outside  the tropical Pacific on the  El Niño-Southern Oscillation occurrence. Atmosphere, 9, 439.

[42] Chen, S.-F., R. Wu, L.-Y. Song, and W. Chen, 2018: Combined influence of the Arctic Oscillation and the Scandinavia pattern on spring surface air temperature variations over Eurasia. J. Geophys. Res. Atmos., 123, 9410–9429.

[41] Chen, S.-F., W. Chen, and B. Yu, 2018: Modulation of the relationship between spring AO and the subsequent winter ENSO by the preceding November AO, Sci. Rep., 8, 6943. doi: 10.1038/s41598-018-25303-0.

[40] Chen, S.-F., R. Wu, W. Chen, and S. Yao, 2018: Enhanced linkage between Eurasian winter and spring dominant modes of atmospheric interannual variability since the early-1990s.  Journal of Climate,  31, 3575–3595.

[39] Chen, S.-F.*, R. Wu, and W. Chen, 2018: A strengthened impact of November Arctic oscillation on subsequent tropical Pacific sea surface temperature variation since the late-1970s. Climate Dynamics, 51, 511–529.

[38] Chen, S.-F.*, and R. Wu, 2018: Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index. Climate Dynamics, 50, 375–389.

[37] Chen, S.-F., and R. Wu, 2018: Impacts of early autumn Arctic sea ice concentration on subsequent spring Eurasian surface air temperature variations. Climate Dynamics, 51, 2523–2542.

[36] Huang, R.-P., S.-F. Chen*, W. Chen, and P. Hu, 2018: Has the Regional Hadley circulation over western Pacific during boreal winter been strengthening in recent decades? Atmos. Ocean. Sci. Lett., 11, 454–463.

[35] Chen, S.-F., R. Wu, and W. Chen, 2018: Modulation of spring northern tropical Atlantic sea surface temperature on the ENSO-East Asian summer monsoon connection.   Int. J. Climatol.,38, 5020–5029.

[34] Chen, S.-F.*, and L.-Y. Song, 2018: Definition sensitivity: Impact of winter North Pacific Oscillation on the surface air temperature over Eurasia and North America. Adv. Atmos. Sci., 35, 702–712.

[33] Huang, R.-P., S.-F. Chen*, W. Chen, and P. Hu, 2018: Interannual variability of regional Hadley circulation intensity over western Pacific during boreal winter and its climatic impact over Asia-Australia region. J. Geophys. Res. Atmos., 123, 344–366.

[32] Piao, J., W. Chen, S.-F. Chen, and K. Wei, 2018: Intensified Impact of North Atlantic Oscillation in May on subsequent July Asian Inland Plateau precipitation since the late 1970s. Int. J. Climatol., 38, 2605–2612.

[31] Xue, X., W. Chen, S.-F. Chen, and J. Feng, 2018: PDO modulation of the ENSO impact on the summer South Asian high. Climate Dynamics, 50, 1393–1411.

[30] Wang, Z., R. Wu, S.-F. Chen, G. Huang, G. Liu, and L. Zhu, 2018: Influence of western Tibetan Plateau summer snow cover on East Asian summer rainfall, J. Geophys. Res. Atmos., 123, 2371–2386.

[29] 陈文,丁硕毅,冯娟,陈尚锋,薛旭,周群 2018:不同类型ENSO对东亚季风的影响和机理研究进展,大气科学,42, 640–655.

[28] Chen, S.-F., and R. Wu, 2017: Interdecadal changes in the relationship between interannual variations of spring north Atlantic SST and Eurasian surface air temperature. Journal of Climate, 30, 3771–3787.

[27] Chen, S.-F., W. Chen, and B. Yu, 2017: The influence of boreal spring Arctic Oscillation on the subsequent winter ENSO in CMIP5 models. Climate Dynamics, 48, 2949–2965.

[26] Xue, X., W. Chen, and S.-F. Chen,  2017: The climatology and interannual variability of the South Asia High and its relationship with ENSO in CMIP5 models. Climate Dynamics, 48, 3507–3528.

[25] Chen, S.-F.*, and R. Wu, 2017: An enhanced influence of sea surface temperature in the tropical northern Atlantic on the following winter ENSO since the early 1980s. Atmos. Ocean. Sci. Lett., 10, 175–182.

[24] Song, L.-Y., S.-F. Chen*, W. Chen, and X. Chen, 2017: Distinct impacts of two types of La Niña events on Australian summer rainfall. Int. J. Climatol., 37, 2532–2544.

[23] Zhong, E.-F., Q. Li, S. Sun, S.-F. Chen, and W. Chen, 2017: Analysis of euphotic depth in snow with SNICAR transfer scheme, Atmos. Sci. Lett., 18, 484–490.

[22] Zhong, E.-F., Q. Li, S. Sun, W. Chen, S.-F. Chen, and D. Nath, 2017: Improvement of a snow albedo parameterization in the Snow–Atmosphere–Soil Transfer model: evaluation of impacts of aerosol  on seasonal snow cover. Adv. Atmos. Sci., 34, 1333–1345.

[21] Cao, X., R. Wu, and S.-F. Chen,  2017: Contrast of 10–20-day and 30–60-day intraseasonal SST propagation  during summer and winter over the South China Sea and western North Pacific. Climate Dynamics, 48, 1233–1248.

[20] Chen, S.-F.*, R. Wu, W. Chen, B. Yu, and X. Cao, 2016: Genesis of westerly wind bursts over the equatorial western Pacific during the onset of the strong 2015-16 El Niño. Atmos. Sci. Lett., 17, 384–391.

[19] Chen, S.-F., R. Wu, and Y. Liu, 2016: Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. Journal of Climate, 29, 1109–1125.

[18] Cao, X., S.-F. Chen*, G.-H. Chen, and R. Wu, 2016: Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western north pacific after the Late 1980s. Adv. Atmos. Sci., 33, 919–930.

[17] Wu, R., and S.-F. Chen,  2016: Regional change in snow water equivalent–surface air temperature  relationship over Eurasia during boreal spring. Climate Dynamics, 47, 2425–2442.

[16] 陈尚锋, 陈文 2016: 北极涛动对ENSO影响的研究进展, 气象科技进展, 6, 6–13.

[15] Wu, R., X. Cao, and S.-F. Chen,  2015: Covariations of SST and surface heat flux on 10–20day and 30–60day time scales over the South China Sea and western North Pacific. J. Geophys. Res. Atmos., 120, 486–499.

[14] Xue, X., W. Chen, S.-F. Chen, and D. Zhou, 2015: Modulation of the connection between boreal winter ENSO and the South Asian high in the following summer by the stratospheric quasi-biennial oscillation. J. Geophys. Res. Atmos., 120, 7393–7411.

[13] Chen, S.-F., R. Wu, W. Chen, and B. Yu, 2015: Influence of the November Arctic Oscillation on the subsequent tropical Pacific sea surface temperature. Int. J. Climatol., 35, 4307–4317.

[12] Chen, S.-F., R. Wu, and W. Chen, 2015: The changing relationship between interannual variations of the North Atlantic Oscillation and northern tropical Atlantic SST. Journal of Climate, 28, 485–504.

[11] Chen, S.-F., W. Chen, and R. Wu, 2015: An interdecadal change in the relationship between boreal spring Arctic Oscillation and the East Asian Summer Monsoon around the early 1970s. Journal of Climate, 28, 1527–1542.

[10] Cao, X., S.-F. Chen*, G.-H. Chen, W. Chen, and R. Wu, 2015:: On the weakened relationship between spring Arctic Oscillation and following summer tropical cyclone frequency over the western north Pacific: A comparison between 1968–1986 and 1989–2007. Adv. Atmos. Sci., 32, 1319–1328.

[9] Chen, S.-F., B. Yu, and W. Chen, 2015: An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s. Climate Dynamics, 44, 1109–1126.

[8] Mei, S.-.L, W. Chen, and S.-F. Chen,  2015: On the relationship between the northern limit of southerly wind and summer precipitation over east China. Atmos. Ocean. Sci. Lett., 8, 52–56.

[7] Chen, S.-F.*, B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dynamics, 42, 973–989.

[6] Chen, S.-F., K. Wei, W. Chen, and L.-Y. Song, 2014: Regional changes in the annual mean Hadley circulation in recent decades. J. Geophys. Res. Atmos., 119, 7815–7832.

[5] Chen, S.-F., W. Chen, and B. Yu 2014: Asymmetric influence of boreal spring Arctic Oscillation on subsequent ENSO. J. Geophys. Res. Atmos., 119:135–150.

[4] Chen, S.-F., X. Chen, K. Wei, W. Chen, and T. Zhou, 2014: Vertical tilt structure of East Asian trough and its interannual variation mechanism in boreal winter. Theor. Appl. Climatol., 115, 667–683.

[3] Chen, S.-F., W. Chen, B. Yu, and H. Graf, 2013: Modulation of the seasonal footprinting mechanism by the boreal spring Arctic Oscillation, Geophys. Res. Lett., 40, 6384–6389.

[2] Chen, S.-F.*, W. Chen, and K. Wei, 2013: Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO. Adv. Atmos. Sci., 30, 1712–1724.

[1] 陈尚锋,温之平,陈文,2011:南海地区大气30-60天低频振荡及其对南海夏季风的可能影响,大气科学, 35, 982–992.


协助培养学生情况:

已毕业学生:

黄汝萍 (2018年,硕士,工作单位:中国气象局广州热带海洋气象研究所,助理研究员)

赵威 (2019年,博士,工作单位:国家气象中心,高级工程师)

林明宇 (2020年,硕士,工作单位:中国气象局公共气象服务中心,科员)

阿如哈斯 (2022年,博士,工作单位:德国马克思普朗克气象研究所,博士后研究员,获博士研究生奖学金)

郑玉琼 (2022年,博士,工作单位:云南大学地球科学学院,讲师)

在读学生:

巨晓明 (硕博连读); 陈劭雯 (硕博连读)任子璇 (硕博连读)程欣 (硕博连读)

胡哲涵 (直博); 朱莹 (直博); 王乐莹 (直博); 陈彦 (直博); 徐玮倩 (直博)

版权所有 © 中国科学院大气物理研究所季风系统研究中心,中国科学院大气物理研究所

京ICP备14024088号

地址:北京市朝阳区德胜门外祁家豁子华严里40号

联系电话:010-62659180